US009317549B2

a2z United States Patent 10y Patent No.: US 9,317,549 B2
Cheriton (45) Date of Patent: Apr. 19, 2016
(54) CONSTRAINT-BASED CONSISTENCY WITH (56) References Cited
SNAPSHOT ISOLATION
U.S. PATENT DOCUMENTS
(71) Applicant: OptumSoft, Inc., Menlo Park, CA (US) 6,275,863 Bl* 82001 Teffetal. .ocoooov... 709/248
6,618,851 B1* 9/2003 Zundeletal. 717/103
(72) Inventor: David R. Cheriton, Palo Alto, CA (US) 7,653,665 BLl* 1/2010 Stefanietal.ccc.c... 714/19
8,676,851 B1* 3/2014 Nesbitetal. 707/791
. 2005/0021567 Al* 1/2005 Holenstein et al. 707/200
(73) Assignee: OptumSoft, Inc., Menlo Park, CA (US) 2006/0219772 Al* 10/2006 Bernstein etal. 235/379
2010/0114841 Al* 5/2010 Holenstein et al. 707/690
(*) Notice: Subject to any disclaimer, the term of this %8} };gigggg ﬁ} . gggﬁ Iéarsl?n etal. .. ;8;;235
: : (S0} G
%atsmg llssixée%deg 55 dadju“ed under 33 2011/0246725 AL* 10/2011 Moir etal. ... 711/147
S.C. 154(b) by 255 days. 2012/0136839 Al 5/2012 Eberlein et al
2012/0150802 Al* 6/2012 Popovetal. ... 707/635
(21) Appl. No.: 13/926,186 2012/0166407 Al 6/2012 Leeectal.
2012/0259863 Al 10/2012 Bodwin et al.
(22) Filed ¥ 25. 2013 2014/0337303 Al™* 112014 Littleccocoecvevrennene 707/703
iled: un.
’ * cited by examiner
(65) Prior Publication Data Primary Examiner — Cam-Linh Nguyen
US 2014/0379658 Al Dec. 25, 2014 (74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP
(51) Int.CL 57 ABSTRACT
GO6F 17/30 (2006.01) Efficient processing of concurrent atomic transactions is pro-
(52) US.CL vided by identifying the constraints that need to be satisfied
CPC GOG6F 17/30371 (2013.01) for correct application behavior. With these constraints iden-
Lo o ’ tified, commit processing for a transaction can then refer to
(58) Field of Classification Search ’ . . o .
. . the constraints to see if committing the current transaction
CPC v G06F 1(7}?36 533‘;{3(()}1066% 1(7}?3653%;{3(()}202671:’ causes a problem with the constraints. If there is a conflict
’ 17’ 130371 with the constraints, the transaction aborts. If there is no
USPC 207/639. 690. 703 conflict with the constraints, the transaction commits.

See application file for complete search history.

13 Claims, 5 Drawing Sheets

S0 TO
| D) |
| |
S T i
!) | ;
b 1 i
o [s2] T2 |
P i =) | i
b ! i ! :
A : : > |
oo b : : i !
sali bbb | T4
I R : : L)
I : ; ; P
t4, t, 10, 3 2, ti, 2, 10 13, t4

Time

US 9,317,549 B2

Sheet 1 of 5

Apr. 19,2016

U.S. Patent

Time

FIG. 1

US 9,317,549 B2

Sheet 2 of 5

Time

FIG. 2

Apr. 19,2016

U.S. Patent

U.S. Patent Apr. 19,2016 Sheet 3 of 5 US 9,317,549 B2

SO St S2 S3| ToO
| | | | D
| R ¢ ¢ |
i O1 02 O3 5
tOS toe
Time

FIG. 3

U.S. Patent Apr. 19,2016 Sheet 4 of 5 US 9,317,549 B2

transactions:
T1) balance1 —= payment and balance2 += payment
T2) balance1 +=rate1 * balance1 (interest)
T3) balance2 += rate2 * balance2 (interest)

assert constraint:
C1) balance1 >=0
C2) balance2 >=0

update constraints:
C3) rate1 = 0 if balance1 < 1000, rate1 = 0.001 if balance1 >= 1000
C4) rate2 = 0 if balance2 < 1000, rate2 = 0.001 if balance2 >= 1000

FIG. 4A

414

balance1

balance?2

\
406 (

416
FIG. 4B

US 9,317,549 B2

Sheet 5 of 5

Apr. 19,2016

U.S. Patent

T2a
T2¢
)
T2d
_)

T1a

t2, Time 12 t3,

t1

FIG. 5

US 9,317,549 B2

1
CONSTRAINT-BASED CONSISTENCY WITH
SNAPSHOT ISOLATION

FIELD OF THE INVENTION

This invention relates to transaction processing.

BACKGROUND

Atomic transactions are often used to simplify concurrent
and fault-tolerant programming. A transaction is atomic if it is
indivisible, such that an attempt to perform the transaction
can have only two possible outcomes: 1) either all parts of the
transaction occur (transaction commits), or 2) no parts of the
transaction occur (transaction aborts). Thus, for an atomic
transaction, it is impossible for partial execution of the trans-
action to occur. For example, if a transaction is a transfer of
funds from one account to another account, it is highly desir-
able for this transaction to be atomic, to avoid the possibility
of'acredit being applied to one account without a correspond-
ing debit in the other account (or vice versa). Similar advan-
tages accrue to atomic transactions in more general program-
ming situations.

One can identify two fundamental approaches for provid-
ing atomic transactions: 1) in-place update and 2) shadow
copy. The first is normally implemented by locking to prevent
concurrent updates as well as an undo log, to be able to undo
changes in the case of transaction abort. It can also be imple-
mented optimistically, instead of using locks, by aborting the
transaction if another transaction writes data that this trans-
action is writing (a so-called write-write conflict) or writes
data this transaction is reading (a so-called read-write con-
flict).

Historically, in-place update has been favored because of
the benefits of maintaining the disk layout, given that most
transactional data has been disk-based until recently. How-
ever, read-locking is a significant overhead, given the prepon-
derance of reads over writes in many applications. Moreover,
read-locking data means updates to the locked data are
delayed, which really means it ends up being potentially
inconsistent with the real world, if the corresponding real
world values change during the time it is locked. In some
sense, this means its focus on achieving internal consistency
can lead to inconsistency with the external environment. The
optimistic form of in-place update can suffer from excessive
abort rate, given the prevalence of read-write conflicts.

With the move to in-memory databases, the shadow copy
approach becomes more attractive than before. Here, an
updating transaction makes a copy of the data to be updated,
makes the modification and then atomically updates the root
reference (or pointer) to this data to refer to the new (previ-
ously shadow) copy. Taking this approach further, a transac-
tion can execute from snapshots (i.e. immutable copies) of
even the data that it is just reading. This approach is referred
to as snapshot isolation (SI). This approach provides most of
the properties of conventional serialized transactions with the
additional significant benefit of not suffering from the read-
write conflicts of the in-place update transactions, which can
either incur significant locking overhead or else increase the
abort rate in the case of an optimistic implementation.

The shadow copy can be attractive in a distributed imple-
mentation because there it is often necessary to duplicate data
at a process performing the transaction, thereby providing a
copy or snapshot of the data to provide efficient local access.
In this case, the copy overhead of S1 is effectively eliminated
by the access savings this copy provides for local processing,
or conversely the creation of the local copy effectively has

10

15

20

25

30

35

40

45

50

55

60

65

2

already paid the cost of a snapshot as required by the SI
transaction mechanism. This local copy can also reduce a
process’s exposure to the failure and restart of a process
containing the primary copy of the state because it can con-
tinue to operate with its local snapshot.

Unfortunately, SI does not provide sequential consistency
(or serializability as it is described in the database world) in
the sense that all executions produce the same results as if
executed in some sequential order. The compromising behav-
ior arises because of the so-called write skew problem. This
problem can be illustrated by considering a simple assert
constraint that a transactional application is expected to main-
tain. For example, consider the assert constraint:

39>b+c;

where separate transactions Th and Tc can update b and c,
respectively. If b and ¢ are initially 10, Tb could update b to
20, viewing a snapshot of ¢ as 10, whereas Tc could update ¢
to 20, similarly viewing a snapshot of b as 10. These two
transactions can both commit concurrently in the SI model
because there is no write-write conflict, yet doing so causes
the constraint to be violated.

Various solutions to this problem have been proposed,
including ensuring strict serializability of SI transactions, but
these lead to excessive overhead, either on the transaction
processing itself or by increasing the abort rate of transactions
far above that strictly necessary.

What is needed is a means of ensuring correct application
behavior while maintaining application and implementation
benefits of SI transactions.

SUMMARY

The present approach is based on identifying the con-
straints that need to be satisfied for correct application behav-
ior. With these constraints identified, commit processing for a
transaction can then refer to the constraints and to concurrent
updates to see if committing the current transaction causes a
problem with the constraints. If there is a conflict with the
constraints, the transaction aborts. If there is no conflict with
the constraints, the transaction commits.

In comparison with conventional snapshot isolation, the
present approach provides superior semantics because it
addresses the write skew problem of conventional snapshot
isolation.

In comparison with conventional fixes to the write skew
problem of SI (e.g., serializable SI), the present approach can
provide greater efficiency (e.g., reduced transaction overhead
and/or fewer unnecessary transaction aborts). For example,
many apparent write-write conflicts can be resolved without
aborting a transaction if the requirements on the data are
expressed as constraints that can be checked as part of commit
processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an illustrative time line of several transac-
tions.

FIG. 2 shows an example of updating the snapshot of the
current transaction according to concurrent updates to pro-
vide merged snapshots.

FIG. 3 shows an example of updating a snapshot according
to operations performed by the current transaction.

FIG. 4A provides an illustrative example of transactions,
assert constraints, and update constraints.

FIG. 4B is a diagram relating to the example of FIG. 4A.

US 9,317,549 B2

3

FIG. 5 shows an example of performing transaction pro-
cessing in rounds.

DETAILED DESCRIPTION
Introduction

We provide correct application behavior with snapshot
isolation (SI) transactions by:

1) explicitly specifying constraints on the underlying data
model;

2) designing application processing be correct if the data
model maintains these constraints; and

3) checking the constraints as part of transaction commit
processing to ensure that each constraint is maintained by the
transaction, or else aborting the transaction if that is not
achieved.

If all such constraints are explicitly specified, the infra-
structure can ensure that a transaction that violates such a
constraint is aborted.

We argue that an application can be designed to operate
correctly if the required constraints on its data model are
maintained, as follows. First, each application transaction is
realized as a sequence of instructions that read and write the
application state, i.e., its data model. In all models of trans-
actions, each application transaction executes independently
and concurrently except for its interaction through this data
model. This application processing makes certain assump-
tions about the data model for its correct execution. These
assumptions can be captured in terms of constraints, state-
ments that are to be true of the data model during the execu-
tion of an application transaction. Thus, if an application is
correct procedurally relative to these constraints, and the data
model constraints are true during the execution of each trans-
action, the application executes correctly.

The conventional approach of requiring serializability does
not, by itself, ensure that the application-specific constraints
hold. It is simply a (heavy-handed) way of ensuring that, if the
imperative code of transactions preserve the constraints when
executed as serial transactions, then this code also preserves
the constraints when executed concurrently by multiple trans-
actions, because the execution is serializable, i.e. equivalent
to serial execution.

In contrast, in the present work the constraints are explic-
itly stated and then constraint-specific means are employed to
ensure that they hold, rather than imposing this generic order-
ing requirement (which often amounts to an overkill solution
to the problem of write skew).

In some cases, the input source code includes a specifica-
tion of the constraints. In such cases, corresponding con-
straint checking code can readily be generated automatically.
If the input source code does not include an explicit specifi-
cation of its constraints, automatic generation of correspond-
ing constraint check code may be possible via automated
program analysis. However, in practice, it is likely that the
user will need to provide the constraint checking code for
input source code that does not have explicit constraints.
Ensuring Data Model Constraints with SI Transactions

The feasibility of ensuring the constraints hold using SI can
demonstrated by considering the conventional solution to
write skew.

The conventional solution effectively materializes each
constraint as a variable that is updated by any transaction that
updates a variable in this constraint. For example, using the
earlier example, there would be a variable, say, with the
constructed name “constraint—(39>b+c)” that is incremented
as part of updating b or c. Consequently, any two concurrent

10

15

20

25

30

35

40

45

50

55

60

65

4

transactions affecting the same constraint would have a write-
write conflict and atleast one of them would be aborted by the
SI transaction mechanism. Thus, it is feasible for the transac-
tion mechanism to automatically ensure these constraints
hold during each transaction by this construction.

Note that, in many cases, this approach leads to unneces-
sary aborts. For instance, continuing our earlier example, if
both a and b are updated concurrently yet their sum is still less
than 39, one of the transactions is unnecessarily aborted
because of the write-write conflict on the constraint variable
even though committing both would still preserve the con-
straint. Moreover, in the worst case, the write-set of these SI
transactions could be expanded so that all transactions have
an overlapping write set, forcing a sequential execution of
these transactions. In effect, this construct expands the write
set to compensate for the lack of detection of read-write
conflicts.

The present approach thus provides a method of commit-
ting transactions that allows greater concurrency and fewer
aborts based on the actual semantics of the constraints (as
opposed to declaring write-write conflicts in all cases).

The basic idea is to have knowledge of these constraints
available at commit time, to identify any conflicts at the time,
attempt to resolve these conflicts, and only abort if these
conflicts cannot be resolved, assuming the transaction would
not be aborted for other reasons, such as a resource limitation.

Before elaborating further on this approach, we first clarify
some terminology. A concurrent transaction is one that com-
mitted to the data model after the start time of the current
transaction and before the target commit time of this transac-
tion. A concurrent update is one performed by such a concur-
rent transaction. FIG. 1 provides some examples to illustrate
this terminology. Here TO is the current transaction, shown on
a time line. Transactions T1 and T2 are concurrent with TO,
while transactions T3 and T4 are not concurrent with TO. Note
that the definition of concurrent is relative to which transac-
tion is designated as the current transaction. For example, if
T2 is regarded as being the current transaction, then TO is not
concurrent with T2.

More specifically, current transaction TO has a start time t0,
and a current target commit time t0,. Similarly, transactions
T1, T2, T3, and T4 have corresponding start times t1, 12, t3,
and t4, and have corresponding end times t1,12_,t3_, and t4,,
(at which the transactions either commit or abort). T1 and T2
are concurrent with current transaction TO because
10.<t1 <t0, and t0 <t2_<t0,. Thus, t1, and 12, are intermediate
times after the current start time (tc,) and before the current
target commit time (tc,)

An exemplary transaction processing method includes the
following steps:

1) Providing a set of constraints relating to data in the data
model.

2) Performing at least two transactions, where each of the
transactions has a corresponding start time, and relies on a
corresponding snapshot of part or all of the data model as of
the start time. On FIG. 1, these snapshots are labeled as SO,
S1, 82, S3, and S4, corresponding to transactions T1, T1, T2,
T3 and T4 respectively.

3) For a current transaction and one or more concurrent
transactions as defined above, performing a commit process-
ing check that automatically determines whether the current
transaction can be committed consistently with the set of
constraints from at least a) the snapshot of the current trans-
action and b) changes to the data model made by the concur-
rent transactions.

4) Automatically committing the current transaction if it
can be made consistently with the set of constraints. and

US 9,317,549 B2

5

5) Automatically aborting the current transaction if it can-
not be made consistently with the set of constraints. Here
steps 4 and 5 rely on the results of the commit processing
check of step 3.

Assert Constraints and Read-Write Sets

An “assert” constraint checks that a given condition is true
and if not, forces the abort of the transaction.

In this approach, each assert constraint is checked against
other concurrent updates, aborting the current transaction if
the assert constraint is violated using the current values, i.e.
after these updates, and those updated in the current transac-
tion. The read set for an assert constraint is the set of variables
that need to be read to evaluate the constraint expression, i.e.
determine if it is true. If the current transaction has written at
least one variable (X) that is specified as part of the constraint,
the checking then needs to determine if any concurrent trans-
action has changed any of the other variables associated with
the constraint. This could be regarded as a read-write conflict
check. If one or more such variables have been modified by a
concurrent transaction, the constraint check needs to
re-evaluate the constraint with those newly committed values
as well as its updated but not committed value of X to verify
that the constraint still holds.

In effect, one can view that the concurrent updates are
applied to the current transaction’s snapshot before this snap-
shot is committed to generate a merged snapshot. The assert
constraints are checked against this merged snapshot of the
data model state. FIG. 2 shows an example of this. Here the
concurrent update of transaction T1 is applied to the initial
snapshot SO to generate a first merged snapshot Sm1 (which
could replace the initial snapshot SO). Later on, the concur-
rent update of transaction T2 is applied to merged snapshot
Sm1 to generate a second merged snapshot Sm2 (which could
replace the earlier merged snapshot Sm1). The commit pro-
cessing check for current transaction TO can refer to snapshot
Sm?2 and thereby include the effects of the concurrent updates
from transactions T1 and T2. The commit processing check
can include re-evaluation of assert constraints using the
merged snapshot. If several merged snapshots were gener-
ated, the most recent one is employed. The example of FIG. 2
shows separate merged snapshots for clarity of illustration.
Alternatively, a single merged snapshot is generated at the
time of commit processing that includes the effects of all
concurrent updates to variables in the read set determined
from the constraints as above. For either alternative, such
merged snapshots account for committed changes due to
concurrent transactions by updating an earlier snapshot,
while not exposing the current transaction to uncommitted
changes by concurrent transactions.

FIG. 3 shows a variation on this theme, where current
transaction TO updates its snapshot according to operations it
performs to provide an updated snapshot for the commit
processing check. In this example, operations O1, 02, and O3
are applied in sequence to initial snapshot SO by current
transaction TO to provide updated snapshots S1, S2, and S3
respectively. The commit processing check can refer to the
updated snapshot S3 to determine whether or not to commit
current transaction TO. If TO is aborted, the changes made in
updated snapshots S1, S2, and S3 never get committed to the
main data model, thereby preserving the desired property of
atomic transactions. The example of FIG. 3 shows separate
updated snapshots for clarity of illustration. Alternatively, a
single updated snapshot is generated at the time of commit
processing that includes the effects of all operations of the
current transaction.

The concurrent updates can be determined from the redo
log, as is conventional practice.

20

40

45

55

65

6

In an embodiment, concurrent updates can be determined
by comparing the current transactions snapshot to the current
committed data model state, with the differences, excluding
those caused by updates in the current transaction, indicating
the concurrent updates.

In an embodiment, concurrent updates can be determined
by comparing the current committed data model state to an
unmodified snapshot of the committed state as of the start
time of current transaction with the differences indicating the
concurrent updates.

In an embodiment, concurrent potentially conflicting
updates can be detected by materializing and updating a vari-
able per constraint, as described earlier, but using the indica-
tion of a write-write conflict on such a constraint variable to
trigger constraint resolution processing as above rather than
immediately aborting the current transaction.

With the above approach, it is possible for two concurrent
transactions to update two attributes affecting the same con-
straint and still commit. For example, continuing the earlier
example, if a transaction Tb updating b runs concurrently
with a current transaction Tc updating ¢, on commit process-
ing of Tc, the concurrent update of b is detected triggering the
re-evaluation of the constraint. If the updated values of b and
c are still less than the upper bound 39, the current transaction
can commit, and otherwise it is aborted. Thus, a transaction is
only aborted by an assert constraint in this approach if it is
logically necessary to do so.

In an embodiment, the transaction mechanism can select
this approach of re-evaluating constraints for some con-
straints while using the conventional “constraint variable”
approach for others, for instance, if a constraint was deemed
to expensive or difficult for the commit processing to per-
form. In the expected case, most constraints are relatively
simple. Thus, an embodiment that only applies this constraint
analysis approach to simple constraints and resorts to the
conventional construct of a “constraint variable” otherwise
should provide significant performance improvement over
purely using the conventional approach while minimizing the
development complexity.

Update Constraints

Another category of constraints are “update constraints” in
which the value of some attribute is determined by the con-
straint and thus updated when the parameter values of the
constraint are changed. An example of an update constraint is
an “equality constraint” in which the determined attribute is
specified as being equal to some expression. For example:

al=a0+1;

means that al is constrained to be equal to the value of a0 plus
1. With an update constraint, the implementation causes the
determined attribute, namely al in this case, to be updated
when an argument to the constraint is changed, namely a0 in
this case.

An implementation of update constraints is described in
U.S. patent application Ser. No. 12/154,399, filed May 21,
2008, entitled “Notification-based constraint set translation
to imperative execution”, hereby incorporated by reference in
its entirety. In contrast, a conventional SQL integrity con-
straint, such as an assert, simply checks if the associated
expression holds during the commit of a transaction, and
aborts the transaction if not.

FIGS. 4A-B provide a simple example of the difference
between assert constraints and update constraints. On FIG.
4A, three transactions are considered. Transaction T1 is a
transfer of funds from account 1 to account 2, transaction T2
is an interest accrual in account 1, and transaction T3 is an
interest accrual in account 2. Assert constraints C1 and C2 are

US 9,317,549 B2

7

to prevent overdrawing accounts 1 and 2 respectively. Update
constraints C3 and C4 serve to update the interest rates for
accounts 1 and 2 when the balance changes (no interest if the
balance is <1000, interest paid if balance >=1000).

FIG. 4B shows Venn diagrams of constraints (left side) and
data model members (right side) for the example of FIG. 4A.
Here 402 is the set of all constraints, 404 is the set of all
constraints that relate to current transaction T1, and 406 is the
subset of constraints 404 that are update constraints. On the
right side, 412 is the set of all data model members, 414 is the
set of all data model members affected by the current trans-
action T1, and 416 is the set of data model members affected
by T1 because of its associated update constraints. It is con-
venient to refer to data model members that are affected by
update constraints of the current transaction as “target mem-
bers”.

In this example, we see that transaction T1 directly affects
the data elements balancel and balance? (i.e., there is a trans-
fer of funds). However, because of the update constraints,
target members ratel and rate2 are also indirectly affected by
committing transaction T1. This can be regarded as a mecha-
nism for checking consistency of second (and higher) order
effects of committing the current transaction with the relevant
set of constraints. Thus, the commit processing check can
include: 1) determining, for the current transaction, target
members of the data model that would be updated as a result
of update constraints by committing the current transaction;
and 2) determining whether committing the current transac-
tion and updating the target members according to the update
constraints is consistent with the set of constraints.

In the present work, the determined attribute can be auto-
matically updated and added to the write set before, or as part
of, committing the transaction. Thus, the transaction, on com-
mit, automatically ensures this constraint is maintained. The
transaction is aborted if there exists an unresolvable write-
write conflict, even if one or more of the writes were caused
by such a constraint resolution.

In an embodiment, assert and update constraints are speci-
fied such that an update constraint cannot cause an assert
constraint to be violated. This situation can be realized by
having an assert constraint that precludes such a violation. For
instance, if variable al is determined by an update constraint
as in the earlier example and al is constrained to be less than
100 by an assert constraint al <100, this assert constraint is
replaced by the assert constraint a0<99, so the update con-
straint never causes an assert violation.

In an embodiment, a transaction is committed independent
of conflicting writes to a determined attribute by the associ-
ated update constraint when the update constraint is (re)
evaluated at commit time using the merged snapshot. This is
warranted because the determined attribute is determined by
the constraint and the merged snapshot, not directly by the
actions of any transaction.

In an embodiment, the constraints specified for the data
model are translated into a collection of single-trigger con-
straints, e.g., as part of compilation and instantiation of the
data model. Thus, when an update is performed by a transac-
tion and applied to the data model, the imperative procedure
associated with each triggered constraint is invoked, and any
writes performed by these constraints are tracked as part of
the transaction. In particular, the concurrent updates are logi-
cally applied to the current snapshot, which means these
updates can also cause triggering of update constraints, but all
these constraints are then evaluated with the currently com-
mitted state plus that to be committed as part of the current
transaction, ensuring the constraint holds in the final (to-be-
committed) state. As indicated above, in practice it is usually

10

15

20

25

30

35

40

45

50

55

60

65

8

preferable to defer all modification of the current snapshot
until the commit processing of the current transaction (as
opposed to updating snapshots after each concurrent update).
If a concurrent updates affects an update constraint, that
update constraint processing can be retriggered by merging
this concurrent update during the commit processing of the
current transaction.

A write by a constraint-handling procedure can trigger
other constraints, which can trigger further writes. It is the
responsibility of the application programmer in developing
the constraint specification to ensure that this sequence even-
tually completes. In practice, the sequence is normally short,
such as one or two levels of triggering.

In the case of a failure as part of the constraint processing,
the transaction is aborted and the changes to the data model
are undone.

In a distributed embodiment, the data model instantiation
can be executed as a separate “sysdb” process from the pro-
cesses executing code to perform the actions of the transac-
tions, the latter processes referred to as “agents”. When such
an agent completes the transaction execution, it communi-
cates this fact to the sysdb process which then handles the
commit processing. If the entire data model is maintained by
a single sysdb process, it can perform the commit processing
of all the constraints as a local action, thus making it efficient
compared to a design requiring distributed communication.

In an embodiment in which the data model is partitioned
across multiple sysdb processes, it is possible that a con-
straint-generated write applies to state stored in a sysdb pro-
cess that is not, heretofore, involved in this transaction. In this
case, the current transaction is expanded to include this addi-
tional sysdb process.

In an embodiment, the sysdb process logs the changes of
the transaction to the data model (i.e. a redo or write-ahead
log) and has not actually applied these changes to the data
model instantiation. During the initial prepare-to-commit, it
then applies these logged changes to the data model instan-
tiation causing the constraints to generate additional writes.
These additional writes are captured by a logging mechanism
that detects changes to the data model for persisting these
changes to secondary storage and/or communicating these
changes to other copies of the data model, such as a backup
copy provided by a separate process (provided to allow fast
recovery in the case of failure). Applying these logged
changes can also invoke code to check any affected assert
constraints. If any of these assert constraints fail, the transac-
tion can then be aborted.

Note that in this embodiment, the state in this sysdb process
during the application of these logged changes represents the
merged snapshot up to this point in the log. If an assert
constraint is affected by multiple changes in the log, the last
such change provides the fully merged snapshot state relative
to said assert constraint. Thus, the assert constraint is always
evaluated effectively on the final merged snapshot of the state
for the current transaction.

After this constraint execution has completed, if the trans-
action is still able to commit (i.e. there have been no failures
as a result of the constraint checks or actions), the transaction
state is committed in the conventional way, typically flushing
the updates out to a redo log with an indication of transaction
commit. If the transaction is forced to abort during commit
processing, the changes to the sysdb state can be undone from
an undo log, as is well-established in the art.

In the case that a write-write conflict is detected as part of
this commit processing, the commit processing attempts to

US 9,317,549 B2

9

resolve the write-write conflict, as described below, and oth-
erwise aborts the transaction if it cannot resolve the write-
write conflict.

Write-Write Conflict Resolution

In an embodiment, metadata is available at commit time
regarding the attributes in the data model that have been
updated by this transaction, describing the category, type and
or semantics of these attributes. Then, on a write-write con-
flict, the transaction commit mechanism examines the asso-
ciated attributes, attribute values and the associated metadata
to determine if there is a possible resolution.

As one case, the metadata may indicate that attribute ai, on
which there is a write-write conflict between the current
transaction and a concurrent transaction, is a counter. In such
a case, the commit processing can determine the increment to
use from the current transaction. The commit processing for
the current transaction can then apply this increment to the
value of ai already committed by the concurrent transaction to
determine a correct final value for ai. In essence, both the
previous committed write and the current transaction are
incrementing the counter, so the write-write conflict need not
abort the current transaction provided it commits with a value
that preserves both increments. If multiple concurrent trans-
actions have updated the counter ai, the commit processing
for the current transaction applies the current transaction
increment to the most recently committed concurrent update.

For example, if the counter has a previous value of 3 in the
original snapshot for the current transaction and now it is 4,
the current transaction has incremented it by 1. Then, if the
currently committed value of the counter is 7 because of
concurrent increments, the current transaction commits with
a value of 7+1=8, so the effect of the current transaction,
namely an increment by 1 is merged with the effects of the
other concurrent updates.

As another case, if an attribute is not a counter, if the
concurrent write and the current transaction write are writing
the attribute to the same value, the write-write conflict can be
considered resolved without further action.

As yet another case, if the metadata indicates that the
write-write conflict is arising on a map data structure with a
defined default or null value, the commit processing can
determine if the concurrent write changes the entry to the
default value, indicating it was effectively deleting the entry
from the map, whereas the current transaction is writing the
same entry to a non-null value. In this case, the value written
by the current transaction can override that of the committed
value, given the earlier committing transaction effectively
deleted an entry and the current one added an entry with the
same key, but a different value.

In some cases, the key for the entry is a generated or
allocated value so that the current transaction can simply
select a different key for an entry that does not conflict with
concurrent updates, and thereby resolve the write-write con-
flict.

Another case is a concurrent transaction writing an element
to the tail of the same queue as the current transaction does.
This case can be resolved by simply appending the current
transaction’s element after the element(s) enqueued by the
concurrent transaction(s).

In an embodiment, an attribute may have a write conflict
resolution procedure associated with it that can do one of the
processing sequences indicated above or alternatively some
application-specific processing that resolves the write-write
conflict. As an illustrative example of the latter, the procedure
may determine that a write-write conflict arose as a result of
the concurrent transaction allocating some shared resource
yet this concurrent transaction represents a lower priority

20

30

35

40

45

50

55

60

10

process or user. In this case, the resource can be reclaimed
from this lower priority process, possibly running a compen-
sating transaction as a result, and this write-write conflict is
then removed as a reason to not allow the current transaction
to commit.

Overall, a constraint may cause writes that conflict with a
concurrent transaction yet can be resolved by the commit
processing based on metadata associated with the affected
attribute. A counter can be handled as above with a suitable
constraint, i.e. the counter is constrained to be equal to the
number of some particular event. As another example, an
attribute containing the average value of those in a collection
can be affected and thus written by two concurrent transac-
tions that update values in this collection. However, by
recomputing the average in the current transaction with the
previously committed values, the revised value eliminates the
need for its original write-write conflict to cause an abort of
the current transaction.

Considering the general structure of applications, an appli-
cation data model is commonly comprised of both raw data
input and (internally) derived data. The raw data input is
normally sourced from specific input devices, so does not
itself lead to write-write conflicts. For example, the raw data
input from sensor 1 does not overwrite that raw data input
from sensor 2. Moreover, there is one process responsible for
reading from sensor 1, so updates from sensor 1 are inherently
sequential and are not concurrent with each other.

In contrast, the derivative data can often be specified in
terms of equality constraints (or similar constructs) that deter-
mine the values of the derived data. Thus, two concurrent
updates of raw data (e.g., from sensors 1 and 2) can cause
write-write conflicts on the derived data, such as the sum
above, and these write-write conflicts can be resolved by
allowing the recomputation of the constraint based on the
merged snapshot.

Using these techniques, write-write conflicts can be
resolved in many, if not all cases, in an application, signifi-
cantly reducing the abort rate, and thereby providing better
performance than a conventional realization of fully serializ-
able execution.

Asynchronous Constraints

In an embodiment, an update constraint can be designated
as being asynchronous by tagging the determined attribute.
For example, the previous constraint could be specified as:

al'next=a0+1;

to indicate that the update to al can take place asynchronously
with respect to the update to a0. In this case, if al is main-
tained by a separate sysdb process, the commit processing on
the original sysdb process initiates a separate “compensating”
transaction to execute on the sysdb process maintaining al,
rather than treating it as part of the current transaction. Con-
sequently, the current transaction does not need to be
expanded to include this update. Nor does it need to wait for
this update to al to be completed.

In the case that the compensating transaction is not able to
commit, there can be a further action specified for this case,
which can include a further compensating transaction to
revert the change to a0. However, in most applications, if a
simple write such as to al cannot be performed, the system
has suffered a fatal problem and cannot continue execution.

A key issue for performance is careful partitioning of the
data model across multiple sysdb processes when this is
required, and specifying constraints such that when there are
cross-partition constraints, they are specified as asynchro-
nous if feasible.

US 9,317,549 B2

11

Application logic dealing with asynchronous equality con-
straints cannot assume that the constraint strictly holds. How-
ever, the logic can often rely on a weaker form of constraint
semantics. For instance, if, in the above example, a0 is a value
that is slowly changing, then al can be expected to be close to
the proper value, even if not exactly correct. This is because
the compensating transaction to update al is normally per-
formed shortly after any update to a0.

Similarly, in the case of an equality constraint between
collections, if the determining collection is again changing
relatively slowly, the determined collection may be suffi-
ciently close to use. For example, if the application logic is
iterating over the determined collection to compute some
statistics, having an approximately accurate collection may
be adequate for the purposes of this statistics computation.

Finally, some application logic may only be dealing with
state on the second sysdb, and thus encounter no issue of strict
consistency between the two partitions of the state despite
their asynchronous update behavior.

Relaxed Assert Constraints

In practice, real-world constraints are often more relaxed
than those conventionally stated for sequential execution. For
instance, with a classic order-inventory system, one might
cite that the number of items allowed to be ordered should not
exceed those in the inventory. However, in reality, the real
concern is avoiding disappointing customers unnecessarily
and incurring business costs for refunding orders. Moreover,
the actual inventory that is available and suitable to ship is not
precisely known in the data model, given breakage, pilfering
and data capture errors. Thus, the actual computer-stored
value is at best, a good estimate of the number of items
available for orders. On this basis, the constraint can be made
more approximate.

In one embodiment, a constraint can be specified as
approximate by indicating that one or more attributes can use
their previous value. For example, the assert constraint of the
earlier example can be specified as:

39>b'prev+e;

indicating that a transaction updating ¢ can simply use the
snapshotted value of b and does not need to check for a
concurrent write to attribute b. This relaxed constraint elimi-
nates the need to identify the read-write set associated with
this constraint and re-evaluate the constraint.

The definition of the previous value, as specified by the
'prev suffix, is the value of the attribute at the start-time of the
current transaction. Thus, it may be the current value as well
if this attribute was not updated concurrently with the current
transaction.

Application logic can use the relaxed semantics by effec-
tively being able to assume that an assert constraint is
approximately true. In some cases, this approximation can be
tightly estimated. For example, considering a bank overdraft
situation, if the amount someone can withdraw within a given
time interval is limited to say D dollars, the assertion of the
account not being overdrawn is correct within D dollars,
assuming transactions complete in a relatively short period of
time compared to one day.

In an embodiment using the real time clock for the start and
commit times, an application can also know the time interval
between the snapshot value of an attribute (i.e. taken at the
start time), and the current time. This known interval can also
allow an application to bound inaccuracy of the assert con-
straint expression.

By providing a means to specify relaxed assert constraints,
the constraint-based consistency of this invention can be pro-
vided with greater efficiency than if all constraints are speci-

10

15

20

25

30

35

40

45

50

55

60

65

12

fied without allowing these relaxed semantics. This is particu-
larly true for the case of constraints that can span data model
partition boundaries, because then, the relaxed semantics can
avoid performing a distributed transaction with its associated
round-trip communication message costs and delays.
Round-Based Implementation of Transactions

Rather than each agent individually committing transac-
tions, an alternative structure is to tie transaction commit of
every agent to a system-wide round completion, indicated by
a (round) clock. A round is synchronized across the applica-
tion such that an agent does not start processing round i until
it has received all the updates relevant to it from other agents
executing their round i-1. Normally, this is accomplished by
not allowing any agent to proceed to round i until all agents
have indicated their completion of round i-1. In effect, each
new round message from the clock indicates the start of a new
transaction by the agent, also acting to ensure it has received
the state updates from the previous round. The agent then
completes the round processing and responds to the clock, to
effectively commit the transaction. If an agent has no update
to perform during a given round, it effectively commits a null
transaction. This incurs relatively low overhead.

FIG. 5 provides a schematic illustration of transactions
organized into rounds. Here, round 1 starts at time t1, and
ends at time t1_, round 2 starts at time t2_ and ends at time t2,,,
and round 3 starts at time t3, and ends at time t3,. Agents a, b,
¢, and d are expected to execute one transaction each round
(which may be a null transaction). The transactions are
labeled T1a for the transaction by agent a in round 1, T3d for
the transaction by agent d in round 3, etc. A new round usually
does not begin until after all agents have completed the pre-
vious round (i.e., by committing or aborting their respective
transactions). Each agent logically starts its transaction at the
beginning of the round. Its actual execution start may be
delayed by process scheduling constraints, as shown on FIG.
5. Similarly, each agent’s transaction logically completes, i.e.
commits, at the end of the round. Its actual execution may
complete earlier because it has less to do than the processing
available during the round time. Exceptions to this general
scheme are possible. For example, transaction T1b on FIG. 5
spans two rounds. Thus, we regard transactions as being
organized into rounds if most transactions take place within a
single round, with relatively few transactions taking more
than one round.

In one embodiment, individual agent (trans)actions can be
aborted. In this case, the agent whose actions were aborted
receives an indication to that effect, either immediately or at
the start of the next round. It is an application-level decision
on how the abort of an agent’s actions is handled. For
instance, in some cases, the agent can just retry the transaction
in the following round or take an alternative action. Alterna-
tively, the completion of the current round can be held up until
the agent has successfully retried the same transaction. In
some cases, this is equivalent to, and can in fact be imple-
mented as, the agent failing and restarting.

In an embodiment, the snapshot behavior can be imple-
mented by blocking updates on receipt at each participating
agent once a new round has started, releasing these updates to
be provided to the application agent only once the round
completes. In the case of an abort, an abort message is sent to
each agent, which discards these blocked and queued
updates, ensuring these agents do not see the results of round
in which the abort occurred. If only the updates generated by
the aborting process are discarded, only this aborting process
needs to retry its processing for the current round. Otherwise,
all processes revert to their state as of the start of the round and
redo the processing for the current round.

US 9,317,549 B2

13

Alternatively, update messages can be generated as part of
reverting the state of the aborting process to the start of the
round that effectively reverts the state to undo the changes
generating by this aborting process, with the subsequent retry
of this processing generating update messages that provide
the result of the retry processing.

As another alternative, the transaction mechanism can rely
on the new messages generated by the aborting and retrying
process that provide updates to the state to provide the correct
net state result in the blocking and queued messages of each
receiving process before these messages are unblocked and
processed in the agent for the next round. For instance, if the
first aborted processing sets a variable “foo” to 3 and the
subsequent retry sets the variable “foo” to 4, the blocked and
queued messages contain one setting “foo” to 3 followed by
one setting “f00” to 4, so the net result in the state of the agent
is the correct value, namely 4 in this case.

The failure of a process during a round can be handled by
restarting the process, having it recover its state as of the start
of'the round and redo the processing of the round. In this case,
the failure is transparent to the transaction round processing
except possibly for delaying the completion of the round.

With some applications, it may be feasible to allow the
completion of a round even if one or more of the specified
processes have not completed their processing and responded
to the round clock. For example, the round mechanism could
proceed if a specified process has indicated completion of
processing within one of the last 3 rounds. Such a process can
encounter a concurrent update by another process that com-
mitted its transaction in an intervening round. For example,
transaction T1b on FIG. 5 would need to consider concurrent
updates from transactions Tla, Tlc and T1d.

With some applications, the processing of a specific pro-
cess can be allowed to execute outside of the round mecha-
nism, based on the changes that such a process makes to the
state having no impact on the application correctness. For
instance, a temperature sensor process may update the tem-
perature periodically with small differences between con-
secutive values. The application logic can be designed to
operate correctly even if this transpires concurrently with the
round-based transactions, i.e. the temperature appears to
change in the middle of a round. This can be another source of
concurrent updates within a round-based computation.

In an embodiment, there is a provision to indicate special
handling of a specific agent process within rounds along the
lines of the optimizations described above. For instance, a
process can indicate whether the abort of a transaction needs
to be retried in the current round or can slip to the next round.
This indication can be provided in the action of an agent
process registering with the round clock to indicate it is par-
ticipating in the rounds, i.e. as a parameter in the round
registration process. Thus, an embodiment can allow each
application process to select different optimizations in han-
dling aborts and failures with the goal of minimizing the
impact on application performance of these events while still
ensuring application correctness.

In the context of a round-based implementation, the next
suffix is used to designate that the value is updated in the next
round. The 'prev suffix may refer to a concurrently updated
value when the current transaction can span multiple rounds.
That is, the value could have been updated during one of the
intervening rounds.

The round-based approach reduces the cost of the transac-
tions both in terms of messages to initiate and commit trans-
actions, but also the need to specify 'prev constraint values, or
conversely, the cost of failing to do so.

10

15

20

25

30

35

40

45

50

55

60

65

14

The invention claimed is:

1. A method of ensuring consistency of concurrent trans-
actions relating to a data model, the method comprising:

providing a set of constraints relating to data in the data

model,;
performing, using one or more processors of'a computer, at
least two transactions, wherein each of the at least two
transactions has a corresponding start time, and relies on
a corresponding snapshot of part or all of the data model
as of the start time;
wherein a current transaction of the at least two transac-
tions has a current start time and a current target commit
time, and wherein one or more concurrent transactions
of the at least two transactions have committed to the
data model at one or more intermediate times after the
current start time and before the current target commit
time;
performing a commit processing check that automatically
determines whether the current transaction can be com-
mitted to a memory of the computer consistently with
the set of constraints from at least a) the snapshot of the
current transaction and b) changes to the data model
made by the one or more concurrent transactions;

automatically committing the current transaction to the
memory of the computer if it can be made consistently
with the set of constraints; and

automatically aborting the current transaction if it cannot

be made consistently with the set of constraints.

2. The method of claim 1, wherein the commit processing
check comprises:

performing write-write conflict resolution.

3. The method of claim 1, wherein the commit processing
check comprises:

updating the snapshot of the current transaction according

to operations performed by the current transaction to
provide an updated snapshot.

4. The method of claim 1, wherein the commit processing
check comprises:

updating the snapshot of the current transaction according

to committed changes made by one or more of the con-
current transactions to provide a merged snapshot.

5. The method of claim 4, wherein the commit processing
check comprises:

evaluation of one or more assert constraints in the set of

constraints using the merged snapshot.

6. The method of claim 4, wherein the commit processing
check comprises:

performing write-write conflict resolution.

7. The method of claim 1, wherein the commit processing
check comprises:

determining, for the current transaction, target members of

the data model that would be updated as a result of
update constraints in the set of constraints by commit-
ting the current transaction;

determining whether committing the current transaction

and updating the target members according to the update
constraints is consistent with the set of constraints.

8. The method of claim 1, wherein start and commit of
some or all of the at least two transactions is provided by using
a common clock to organize some or all of the transactions in
rounds.

9. The method of claim 1, wherein the set of constraints
includes one or more constraints selected from the group
consisting of: assert constraints, update constraints, asyn-
chronous constraints, and relaxed assert constraints.

US 9,317,549 B2

15

10. The method of claim 1, wherein the set of constraints is
sufficient to ensure correct behavior of a concurrent transac-
tion application program.

11. The method of claim 1, wherein the commit processing
check comprises executing user-supplied code for checking
the set of constraints.

12. The method of claim 1, wherein the commit processing
check comprises executing automatically generated con-
straint check code for checking the set of constraints.

13. The method of claim 12, wherein the automatically
generated constraint check code is generated from the set of
constraints.

16

